ROYAUME DU MAROC UNIVERSITÉ ABDELMALEK ESSAĀDI Ecole Nationale des Sciences Appliquées Tanger

CONCOURS D'ENTREE EN 1^{ère} ANNEE DU CYCLE PREPARATOIRE 24 Juillet 2009

Epreuve de Mathématiques

(Nombre de pages 4 et une fiche réponse à remettre au surveillant, correctement remplie, à la fin de l'épreuve)

CALCULATRICE NON AUTORISEE

Soit L une liste d'entiers relatifs consécutifs dont le premier terme est -22 et le dernier terme est noté par x . $L = \{-22,, x\}$	No) 25
Si la somme de tous les éléments de L est égale à 72 alors x=	c) 22
$\lim_{n \to \infty} \frac{(-1)^n e^n}{\pi^{n+1}} =$ 3)	1 /π Xb) 0 c) n'existe pas
Soit $X_n = \sum_{k=1}^n \frac{2^k}{e^{k+1}}$; alors $\lim_{n \to \infty} X_n =$	b) $\frac{1}{e-2}$ X^{c} $\frac{2}{e(e-2)}$
On considère un carré C ₀ dont les côtés mesurant a cm. Soit C ₁ le carré inscrit dans C ₀ dont les sommets sont les milieux des côtés de C ₀ . Nous procèdons de la même manière et nous formons une famille infinie de carrés (C ₁) tel que C _{i+1} est le carré inscrit dans C _i dont les sommets sont les milieux des côtés de C _i .	(a) $4a(2+\sqrt{2})$ b) $4a(1+\sqrt{2})$ c) $4a$
La somme totale des périmètres des carrés Ci est égale à 5) Soit $w_n = \sum_{p=2}^n \frac{1}{p^2 - 1}$; alors $\lim_{n \to \infty} w_n = \sum_{p=2}^n \frac{1}{p^2 - 1}$	(a) 3/2 b) 3/4 e) + 00
6)	

Soit $(u_n)_{n\geq 0}$ une suite numérique à termes strictement positifs $(u_n > 0)$

vérifiant
$$\frac{u_{n+1}}{u_n} \le k$$
, $\forall n \in IN$ avec

k est une constante strictement inférieure à 1. (k < 1).

On définit la suite $(V_s)_{s\geq 0}$ définie par

$$V_n = \sum_{k=0}^n u_k$$

On considère les assertions suivantes:

- (I) (u,), est bornée
- (II) $\lim_{n\to\infty} u_n = 0$
- (III) $(V_n)_n$ est convergente

Laquelle (lesquelles) des assertions est (sont vraies) ?

- a) Seulement I
- Xb) Seulement I et II
 - c) I, II et III .

$$7) \int_{0}^{\pi/3} \frac{1}{(9+tg^{2}x)\cos^{2}x} dx$$

$$8) \lim_{x\to 0^{+}} \frac{arctg \pi x}{x} =$$

$$9) \lim_{x\to 0^{+}} \frac{\sin^{2}3x}{3x^{2}} =$$

$$10) \lim_{x\to 0} \frac{1}{h} \int_{-2}^{\pi/4} \frac{1}{tgx} dx =$$

$$11) \lim_{x\to 0} \frac{\sin \sqrt{\pi}x}{1-\cos \pi x} =$$

$$12) \int_{-2}^{0} \frac{dx}{x^{2}+6x+12}$$

$$13) \text{ La surface formée par la courbe } de$$

$$f(x) = \frac{1}{x(1+\ln x)} \text{ et par les droites}$$

$$x = 1 \text{ et } x = e^{2} \text{ est égale à}$$

	(a) $\ln 3$ b) $\ln(e^2 + 1) - \ln 2$ c) $e^2 - 1$
Soit $(U_n)_{n\geq 3}$ la suite définie par $U_n = \int_c \frac{1}{x(\ln x)^3} dx$ Alors $\lim_{n \to \infty} U_n = \frac{1}{x(\ln x)^3}$	a) $+\infty$ Xb) $\frac{1}{2}$ c) $\frac{1}{2e^2}$
Soit $g(x) = \int_{0}^{\infty} dx$, alors la tangente à la courbe de g en $x = 1$ admet pour équation	(a) $y = \frac{3e}{2}(x-1)$ b) $y = ex - (e+1)$ c) Les données sont insuffisantes pour la déterminer
$\int \frac{tg\sqrt{x}}{\sqrt{x}} dx =$	a) $\ln(\frac{1}{\cos^2 x}) + K$ b) $-\ln(\cos \sqrt{x}) + K$ Vc) $\ln(\frac{1}{\cos^2 \sqrt{x}}) + K$; (K une constante)
$\lim_{n\to\infty} \left(\frac{n}{3n-1}\right)^{2n-1} = $	Carro b) 1/3 c) +∞
18) Soit B = $\{i, j, k\}$ une base de (IR 3 ,+,·). On considère les familles suivantes $E = \{i + j, i + k, j + k\}$ $N = \{i, j + k, i + j + k\}$ $S = \{i, 2j, 3k\}$ $A = \{i, 2j - k, j\}$ Alors laquelle (ou lesquelles) des familles forme une base?	a) Aucune b) Seulement S Xc) Seulement E S et A
19) Soit $S = \{(x, y, z) \in IR^3 / x + 2y - z = 0\}$. Lequel des systèmes suivants forme une base pour E?	a) {(1,0,1);(0,1,2)} (b) {(0,1,2);(1,0,2);(1,2,0)} c) {(0,1,2)}
On considère les ensembles suivants $E = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0\}$ $N = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\}$ $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = 2\}$ $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ Lesquels parmi ces ensembles sont des sous espaces vectoriels de \mathbb{R}^3 ?	Xa) Seulement E et A b) Seulement N et S c) Tous (E,N,S et A)

Soit A une matrice carrée d'ordre n vérifiant $A^2 = A + 3I_s$ (I_s est la matrice identité) On considère les égalités suivantes (I) det $A = 0$ (II) $A^{-1} = 3I_s - 4$ (III) det $A \neq 0$ (IV) $A^{-1} = \frac{1}{3}(A - I_s)$	a) (II) et (III) sont vraies (III) et (IV) sont vraies c) (I) et (IV) sont vraies
Soit A une matrice carrée d'ordre n vérifiant $A^{2}-A-I_{n}=0_{n}$ (I_{n} est la matrice identité et 22) 0_{n} est la matrice nulle) Alors det $(A-I_{n})=$	a) $\det(A)-1$ b) $\sqrt{\det(A)}$ c) $\frac{1}{\det(A)}$
Soit $A = (a_{ij})_{i \le i,j \le n}$ une matrice carrée (d'ordre n.) On appelle la Trace de A notée par Tr(A) le nombre $Tr(A) = \sum_{i=1}^{n} a_{ii}$ Alors Tr $(A + I_{in}) =$	(a) $Tr(A) + n$ b) $nTr(A)$ c) $Tr(A) + 1$
Si $\int_0^x h(t)dt = x \ln(1+x^2)$ alors $h(1) =$	a) ln2 Yb) 1+ln 2 c) Les données sont insuffisantes
$\int \sin(\ln x) dx =$	a) $\frac{e^x}{2} [\sin x - \cos x] + K$ We have $\frac{x}{2} [\sin(\ln x) - \cos(\ln x)] + K$ c) $\frac{\cos(\ln x)}{x} + K$; K une constante